Task Pizza

After a long day and miserable at work, Mirko decided to order a pizza for dinner to cheer himself up. In a big pile of papers on his desk, he found a flyer of a nearby pizza restarant.

The restarant offers m different pizzas. Pizza toppings are labeled with positive integers. i-th pizza has k_i toppings, with labels $b_{i,1}, b_{i,2}, \ldots, b_{i,k_i}$.

Mirko is very picky when it comes to food. He doesn't like n toppings, those with labels a_1, a_2, \ldots, a_n , so he wants to order a pizza that doesn't contain any of those toppings. Determine the number of pizzas that Mirko can order.

Input

The first line contains an integer n ($1 \le n \le 100$), the number of toppings, followed by n distinct integers a_i ($1 \le a_i \le 100$), the labels of toppings Mirko dislikes.

The second line contains an integer m ($1 \le m \le 100$), the number of pizzas.

The following m lines describe the pizzas. The i-th line contains an integer k_i ($1 \le k_i \le 100$), the numer of toppings, followed by k_i distinct integers $b_{i,j}$ ($1 \le b_{i,j} \le 100$), the labels of toppings on the i-th pizza.

The pizzas, i.e. the sets of toppings, will be distinct.

Output

Output the number of pizzas that Mirko can order.

Scoring

In test cases worth 20 points it holds n=1 and $k_1=k_2=\cdots=k_m=1$.

Examples

${\bf input}$	input	input
1 2 3 1 1 1 2	2 1 2 4 2 1 4 3 1 2 3	1 4 3 1 1 1 2
1 3 output	2 3 4 3 3 5 7	1 3 output
2	output 2	3