

Task 2: Visiting Singapore (visitingsingapore)

Singapore organizes many events. Suppose one event is organized in Singapore per day, where $\Sigma = \{1, 2, ..., K\}$ represents the set of possible events. Attending event *i* will increase your happiness by V[i]. Let S[1], ..., S[n] be the list of events organized in *n* days in order. (Note that the same events may appear multiple times in the sequence.)

You want to attend m events $T[1], \ldots, T[m]$ in this order. (Note that the same events may appear multiple times in T.) So, you decide to fly to Singapore on the *i*th day and leave Singapore on the *j*th day. It is also possible that you do not fly to Singapore at all.

During your visit, you try to attend events $T[1], \ldots, T[m]$ in order.

When you attend the event T[i], your happiness is increased by V[T[i]]. When you skip events $T[p], T[p+1], \ldots, T[q]$, your happiness is reduced by A + (q - p + 1)B where A and B are some given parameters.

In addition, if during your stay you do not attend events for d consecutive days, your happiness is reduced by A + dB. More formally, if you attend the events S[p], S[q] where $p + 2 \le q$ but none of the events in between, your happiness is reduced by A + (q - p - 1)B.

You want to maximize your happiness. Can you compute the maximum happiness?

Input

Your program must read from standard input.

The input starts with a line with five integers K, n, m, A and B, where K, n, and m are positive integers and A and B are negative integers.

The second line contains K positive integers where the *i*th integer represents V[i], the happiness of the *i*th event.

The third line contains n integers, where the *i*th integer represents S[i], which is between 1 and K.

The fourth line contains m integers, where the *i*th integer represents T[i], which is between 1 and K.

Output

Your program must print to standard output.

The output should contain a single integer on a single line, the total happiness in an optimal schedule.

Implementation Note

If you are implementing your solution in Java, please name your file <code>VisitingSingapore.java</code> and place your main function inside class <code>VisitingSingapore</code>.

Subtasks

The maximum execution time on each instance is 2.0s, and the maximum memory usage on each instance is 256MiB. For all testcases, the input will satisfy the following bounds:

- $1 \le K \le 1000$
- $1 \le n, m \le 5000$
- $-100 \le A, B \le 0$
- $1 \le V[i] \le 100$ for all *i*.

Your program will be tested on input instances that satisfy the following restrictions:

Subtask	Marks	Additional Constraints
1	4	$K = 1, m \le n \le 10^3$
2	6	$K = 1, n < m \le 10^3$
3	12	A = B = 0
4	7	A = 0
5	8	B = 0
6	13	n, m < 100
7	50	-

Sample Testcase 1

This testcase is valid for subtasks 1, 6 and 7.

Input	Output
1 5 3 -5 -4	30
10	
1 1 1 1 1	
1 1 1	

Sample Testcase 1 Explanation

In this example, K = 1, n = 5, m = 3, A = -5 and B = -4. Since there is only one type of event and $m \le n$, one possible optimal solution is to go to Singapore on the first day and leave Singapore on the *m*th day.

Since the happiness for the task is 10 and m = 3, the optimal happiness is 30.

Sample Testcase 2

This testcase is valid for subtasks 2, 6 and 7.

Input	Output
1 3 5 -10 -5	10
10	
1 1 1	
1 1 1 1 1	

Sample Testcase 2 Explanation

Since there is only one type of event and n > m, A possible optimal solution is to go to Singapore on the first day and leave Singapore on the *n*th day. Also, we need to skip events $T[m - n + 1], \ldots, T[n]$.

Since the happiness for the task is 10, n = 3 and m = 5, the plan is to try T[1], T[2], T[3] for three days; then skip T[4] and T[5]. The gain in happiness for the first three events is 10*3 = 30. The reduction in happiness for the last two events is A + 2B = -10 + 2(-5) = -20. In total, the optimal happiness is 10.

Sample Testcase 3

This testcase is valid for subtasks 3, 4, 5, 6 and 7.

Input	Output
4 7 4 0 0	7
1 2 3 4	
3 1 2 1 4 1 1	
1 2 3 4	

Sample Testcase 3 Explanation

The optimal solution is to try S[2] = 1, S[3] = 2 and S[5] = 4. The score is 1 + 2 + 4 = 7.

Sample Testcase 4

This testcase is valid for subtasks 4, 6 and 7.

Input	Output
4 8 4 0 -3	-1
1 2 3 4	
3 1 2 1 1 4 1 1	
1 2 3 4	

Sample Testcase 4 Explanation

The optimal solution is to try S[5] = 1 and S[6] = 4. The score is 1 + 4 - (2 * 3) = -1.

Sample Testcase 5

This testcase is valid for subtasks 5, 6 and 7.

Input	Output
4 8 4 -3 0	2
1 2 3 4	
3 1 2 1 1 4 1 1	
1 2 3 4	

Sample Testcase 5 Explanation

The optimal solution is to try S[5] = 1 and S[6] = 4. The entries T[2] and T[3] are deleted, which costs -3. The score is 1 + 4 - 3 = 2.

Sample Testcase 6

This testcase is valid for subtasks 6 and 7.

Input	Output
6 10 6 -2 -1	4
1 2 3 4 5 6	
3 1 5 2 6 1 5 1 1 4	
1 2 3 4 5 6	

Sample Testcase 6 Explanation

The optimal solution arrives at Singapore on day 2 and leave Singapore on day 5. The solution tries S[2] = 1, S[3] = 5 and S[5] = 6. We skip T[2] to T[4]. So, the reduction of happiness is -2 + 3 * (-1) = -5. We skip day 4. So, the reduction of happiness is -2 + (-1) = -3. The score is 1 + 5 + 6 - 5 - 3 = 4.