
 23rd Balkan Olympiad in Informatics
28 June – 3 July 2015, Ruse, Bulgaria

Task day 1 HAPPINESS

(English)

Page 1 of 4

HAPPINESS
Monetary system in X-land is a bit strange. There are banknotes with values of all integer
numbers from 1 to M. There is another strange rule in the shops of X-land – the customer
can never receive change, but also cannot leave a tip – in other words the customer must
always pay the exact value of his purchases. If he does not have the exact sum for his
purchase, then he cannot buy. Imagine what inconvenience this creates for the customers.

Niya is a girl from X-land. Like all other persons, she constantly fights against the rules
described above. She always knows her set of banknotes – let’s assume their values are a1,

a2,…,aN. All those values are between 1 and M and she may possess more than one banknote
of a kind. Also the sequence of values a1, a2,…….,aN, is not ordered in any way. Niya feels
happy, when entering a shop, she may buy any combination of goods with total price equal
to any number between 1 and the total sum of her banknotes a1 + a2 + ... + aN. In that case,
when she is shopping, she must only consider her total amount of money without making
complicated calculations of whether she can buy (or not) with her banknotes.

Remark: Let us sort a1, a2,…….,aN in ascending order. Let us denote Si = 1+a1+ a2+…….+ai.

Necessary and sufficient condition to be able to represent each number between 1 and a1+
a2+…….+aN as a sum of elements from the multiset a1, a2,…….,aN, is that the following
inequality Si ≥ ai+1 held true for each i>1 and a1 = 1.

As expected, Niya’s set of banknotes is changing after each purchase and also after each
wage she receives – that’s why her happiness is variable. You can help the girl with a
program. Your program will receive as an input the initial set of Niya’s banknotes and all the
events that happen – purchases and wages. The program should be able to determine if Niya
is happy in the beginning and after each event.

We should note that Niya feels happy also when she doesn’t have any money – then she just
skips shopping and goes jogging.

 23rd Balkan Olympiad in Informatics
28 June – 3 July 2015, Ruse, Bulgaria

Task day 1 HAPPINESS

(English)

Page 2 of 4

Task

Write functions init() and is_happy(), which will be compiled with jury’s grader. These
functions should serve to determine Niya’s happiness at the beginning and after each event.
The functions will receive as parameters the starting set of banknotes and the sets of
banknotes that are removed from the set (on purchases) and added to the set (on receiving
wage).

Implementation details

You should submit to the grading system a file happiness.cpp, which contains functions:

bool init(int coinsCount, long long maxCoinSize, long long coins[]).

bool is_happy(int event, int coinsCount, long long coins[]).

Parameters description:

coinsCount – number of banknotes that are received (starting set or wage) or discarded
(shopping).

maxCoinSize – maximum value of one banknote.

coins[] – array, in which in random order are given values of the banknotes (index starts
from 0).

event – event’s type :

−1 – Shopping;
1 – Receiving wage.

The function init is called once by the grader at the beginning to set the starting set of Niya’s
banknotes and then grader calls Q times function is_happy with event = −1 (shopping) or
event = 1 (wage). After each call the called function should return true, if Niya feels happy
with her current set of banknotes or false if she doesn’t.

 23rd Balkan Olympiad in Informatics
28 June – 3 July 2015, Ruse, Bulgaria

Task day 1 HAPPINESS

(English)

Page 3 of 4

File happiness.cpp should NOT contain function main(), but can contain other declarations
and functions, necessary for correct working of functions init and is_happy. Your program
should contain #include "happiness.h" in the beginning

Constraints

Let Nc denote the number of Niya’s banknotes at any given moment and K – the number of
banknotes, used in any purchase or wage. Then we have:

0 ≤ Nc ≤ 200 000
0 ≤ Q ≤ 100 000
1 ≤ M ≤ 1012
1 ≤ K ≤ 5

It is guaranteed that in any call of is_happy with event = −1 (shopping) the set of banknotes
given in coins[] is a subset of current Niya’s set of banknotes.

Example

called
function

event coinsCount maxCoinSize coins[] function
returns

init 5 100 4 8 1 2 16 true
is_happy −1(shopping) 2 2 8 false
is_happy 1(receiving wage) 3 7 9 2 true

Subtasks

Subtask Points Nc M Q

1 10 ≤ 300 ≤ 100 ≤ 100

2 20 ≤ 20000 ≤ 1012 ≤ 1000

3 30 ≤200000 ≤ 1000000 ≤ 100000

4 40 ≤ 200000 ≤ 1012 ≤ 100000

 23rd Balkan Olympiad in Informatics
28 June – 3 July 2015, Ruse, Bulgaria

Task day 1 HAPPINESS

(English)

Page 4 of 4

Local testing

In order to be able to test your functions init and is_happy on your local computer, you will
get files lgrader.cpp and happiness.h. Compile them together with your file happiness.cpp
and you will receive a program that you can use to test your functions.

The program expects following input format:

Single positive integers N and M are given on the first row – initial count of Niya’s banknotes
and maximum value of one banknote.

N positive integers are given on the second row, separated by spaces – values of banknotes
in the initial set.

Non-negative integer Q is given on the third row – event’s count.

On each of the next Q rows one event is described – first, a value for the event is given: −1
(shopping) or 1 (receiving of a wage). After that a positive integer K is given – number of
banknotes that are removed or added to Niya’s set. Last K integers are given, separated by
intervals – values for the banknotes which are removed or added.

On the standard output the program will print Q+1 lines with 0 or 1 – "happiness" statuses of
Niya at the beginning and after each event.

Example for local testing

Input Output
5 100
4 8 1 2 16
2
-1 2 2 8
1 3 7 9 2

1
0
1

