Brackets

task: brackets	input file: stdin	output file: stdout
points: 100	time limit: 200 ms	memory limit: 1 GB

Task

A bracket symbol is one of the following: () [] $\{$ >>. A correct bracket expression is any string consisting of bracket symbols, such that:

- Every left bracket has a matching right bracket of the same kind, and every right bracket is matched;
- No two pairs of matching brackets cross for every two such pairs, they are either disjoint or one is contained inside the other.

For example, ([])<> is a correct bracket expression, whereas <{>} is not, as the curly brackets and angle brackets cross each other.

You are given a graph of n vertices in which every (directed) edge is labeled with one of the bracket symbols. A path in this graph is valid, if its edges form a correct bracket expression. For some two vertices s and t, determine the length of a shortest valid path between s and t. We allow the path to pass multiple times through any vertex.

Input

On the first line of input there are four integers n, m, s, t $(1 \le n \le 200, 0 \le m \le 2000, 1 \le s, t \le n)$ – the number of vertices, edges, starting and ending vertex, respectively. Each of the following m lines contains two integers x, y and a bracket symbol b $(1 \le x, y \le n)$, which describe one graph edge. Note that there may be loops and multiple edges.

Output

Output a single line containing a single integer – the length of the shortest valid path between s and t. If there is no such path, output -1. You may assume that if a path exists, its length does not exceed 10^{18} .

Subtasks

Subtask	Points	Description
1	16	$n \le 10, m \le 50$
2	16	$n \le 20, m \le 100$
3	16	$n \le 50$
4	16	$n \le 100$
5	10	s = 1, t = n, a < b for every edge (a, b)
6	26	no additional constraints

Samples

${\rm input}$	output
4 4 1 4	4
1 2 (
2 2 [
2 3]	
3 4)	
${\rm input}$	output
input 5 4 1 5	output
5 4 1 5	
5 4 1 5 1 2 <	