
Data	Transfer
Araz	has	a	binary	sequence	of	 	bits	that	wants	to	send	to	Baba.	As	the	data	might	be
corrupted	during	the	data	transfer,	he	is	going	to	attach	a	sequence	of	 	more	bits	to
the	 source	 data	 so	 that	 Baba	 can	 recover	 the	 original	 	 bits	 in	 the	 case	 of	 data
corruption.	 We	 know	 that	 at	 most	 one	 bit	 out	 of	 the	 total	 	 bits	 might	 be
corrupted	during	the	data	transfer.

Your	task	is	to	help	Araz	and	Baba	in	sending	and	receiving	the	data	while	minimizing	
.

Implementation	details

You	should	implement	two	different	procedures:

​int[]	get_attachment(int[]	source) ​

This	procedure	plays	for	Araz.
:	an	integer	array	of	length	 ,	demonstrating	the	binary	sequence	provided

to	Araz	(all	integers	are	either	 	or).
It	should	return	an	array	of	 / 	integers,	containing	the	 	bit	attachment	that	is
appended	to	the	source	sequence.	This	array	must	not	be	longer	than	 .

​int[]	retrieve(int[]	data) ​

This	procedure	plays	for	Baba.
:	 an	 integer	 array	 of	 length	 ,	 demonstrating	 the	 (possibly	 corrupted)

sequence	of	data	received	by	Baba	(all	integers	are	either	 	or).
It	must	return	an	integer	array	of	length	 ,	containing	the	original	sequence	of	
bits	based	on	the	data	received	by	Baba.

Consider	 a	 function	 ​manipulate ​	 which	 receives	 a	 binary	 sequence	 and	 returns	 a
similar	 sequence	 that	 at	 most	 one	 of	 its	 bits	 is	 toggled.	 Your	 implementation	 of
get_attachment ​	 and	 ​retrieve ​	must	 be	 such	 that	 for	 every	 binary	 sequence	 ​source ​
(with	 length)	 and	 every	 function	 ​manipulate ​,	 we	 should	 have
retrieve(manipulate(data))	=	source ​,	where	 ​data ​	 is	 the	concatenation	of	 ​source ​
and	 ​get_attachment(original) ​.	Otherwise,	your	implementation	is	wrong.

There	 are	 	 scenarios	 in	 a	 test	 case.	 For	 each	 scenario,	 the	 grader	 first	 calls	 the

Transfer (1 of 3)

procedure	 ​get_attachment ​	with	a	source	sequence.	Next,	it	may	toggle	one	of	the	bits
in	 the	 source	 or	 attachment	 sequence.	 The	 result	 is	 then	 passed	 to	 the	 procedure
retrieve ​.	 Note	 that	 in	 the	 judging	 system,	 these	 procedures	 are	 called	 in	 separate
programs.	 In	 the	 first	 program,	 procedure	 ​get_attachment ​	 is	 called	 once	 for	 each
scenario.	 Invocations	 of	 procedure	 ​retrieve ​	 are	 made	 in	 the	 second	 program.	 The
behavior	of	your	implementation	for	each	scenario	must	be	independent	of	the	order	of
the	scenarios,	as	scenarios	might	not	have	the	same	order	in	the	two	programs.

Subtasks	and	scoring

There	are	two	subtasks:

1.	 (points)	 ,	
2.	 (points)	 ,	

Your	score	in	each	subtask	will	be	 	if	the	retrieved	sequence	was	incorrect	for	any	of
the	 scenarios	 in	 any	 of	 the	 test	 cases.	 Otherwise,	 let	 	 be	 the	 maximum	 size	 of
attachment	 ()	 among	 all	 scenarios	 in	 all	 test	 cases	 of	 the	 subtask.	 Your	 score	will
then	be	computed	as	below.

Subtask	1:	condition score Subtask	2:	condition score

Examples

Suppose	 that	Araz	attaches	 the	source	with	 the	constant	sequence	 ,	and	Baba
just	 ignores	 the	 attachment	 and	 retrieves	 the	 first	 	 bits	 of	 data	 as	 the	 source
sequence.	Clearly,	this	is	just	an	example,	not	a	correct	strategy.

The	grader	makes	the	following	procedure	call:

​get_attachment([0,1,1,0,...,0,0,1]) ​

Transfer (2 of 3)

In	this	example,	 	is	 	and	the	procedure	returns	 .	So,	the
whole	data	to	be	sent	is	 .

Now,	assume	that	the	last	bit	of	data	is	corrupted	during	the	data	transfer.	Hence,	the
grader	makes	the	following	procedure	call:

​retrieve([0,1,1,0,...,0,0,1,0,1,1]) ​

The	procedure	returns	 	which	happens	to	be	the	correct	answer.

Sample	grader

The	sample	grader	reads	the	input	in	the	following	format:

line	 :	
line	 	(for):	

:	The	(-based)	index	of	the	corrupted	bit	in	the	data	().
If	 ,	then	none	of	the	bits	will	be	corrupted.

:	a	binary	(​0 ​/ ​1 ​)	string	of	length	 	representing	the	source	sequence.

The	sample	grader	writes	the	output	in	the	following	format:

line	 	 (for):	 the	 verdict	 of	 your	 solution	 for	 scenario	 .	 It	 also
prints	 	when	the	source	sequence	is	retrieved	correctly.

Transfer (3 of 3)

