Problem C. Longest beautiful sequence

Input file: Standard input (not file I/O)
Output file: Standard output (not file I/O)

Time limit: 6 seconds (because of slow server, sorry)

Memory limit: 256 megabytes

You're given two sequences of n nonnegative integer numbers: a_1, a_2, \ldots, a_n and k_1, k_2, \ldots, k_n . The sequence of m integer numbers i_1, i_2, \ldots, i_m is called *beautiful* if it meets with following criteria:

- $1 \le i_1 < i_2 < \ldots < i_m \le n$. In other words, sequence must be increasing.
- $bitCount(a_{i_{j-1}} \text{ AND } a_{i_j}) = k_{i_j} \text{ for all } 1 < j \leq m.$

Find longest beautiful sequence.

Input

On first line of input given positive integer number n $(1 \le n \le 10^5)$ — the length of sequences a and k. Second line of input contains n nonnegative integer numbers a_i $(0 \le a_i < 2^{20})$ — sequence a. Third line of input contains n nonnegative integer numbers k_i $(0 \le k_i \le 20)$ — sequence k. Numbers in both sequences are separated by single spaces.

Output

On first line of output print out one integer number m — length of longest beautiful sequence. On second line print out m integers — longest beautiful sequence, separated by single spaces. If there is multiple solutions, print any of them.

Scoring

This problem consists of four subtasks:

- 1. $1 \le n \le 15$, $0 \le a_i < 2^{20}$. This subtask worths 7 points.
- 2. $1 \le n \le 5000$, $0 \le a_i < 2^{20}$. This subtask worths 16 points.
- 3. $1 \le n \le 10^5$, $0 \le a_i < 2^8$. This subtask worths 17 points.
- 4. $1 \le n \le 10^5$, $0 \le a_i < 2^{20}$. This subtask worths 60 points.

Each subtask will be scored only if the solution successfully passes all of the previous subtasks.

Examples

subsequence.in	subsequence.out
4	4
1 2 3 4	1 2 3 4
10 0 1 0	
2	1
8 9	1
20 0	
5	2
5 3 5 3 5	1 2
10 1 20 1 20	

Note

bitCount(x) — number of ones in binary representation, e.g. $bitCount(5_{10}) = bitCount(101_2) = 2$, bitCount(0) = 0, bitCount(8) = 1.

AND — is a binary operation, which takes two equal-length binary representations and performs the logical AND operation on each pair of the corresponding bits, e.g. 11_{10} AND $13_{10} = 1011_2$ AND $1101_2 = 1001_2 = 9$, 7_{10} AND $16_{10} = 111_2$ AND $10000_2 = 0_2 = 0_{10}$.