

Task 1: Pilot

Rar the Cat has finally fulfilled his childhood dream of becoming a pilot, and wants to take his friend, Dinosaur, on a few scenic flights. Rar lives on a linear world, which can be described as a series of N integers, with the *i*th integer H_i indicating the height of the *i*th mountain from the leftmost edge of his world.

For example, the world described with N = 6, $H = \{1, 3, 2, 4, 1, 2\}$ will look like this:

Rar has a total of Q planes that he wishes to show off, with the *i*th plane having a maximum cruising altitude of Y_i metres. Each flight starts from the *s*th mountain and ends on the *e*th mountain. We may assume that $s \le e$, i.e. **Rar will always fly toward the right**. As each of his planes have a maximum cruising altitude, he is unable to fly across, take off from, or land on a mountain where its height is greater than its cruising altitude, i.e. Rar is only able to fly over the *i*th mountain using the *j*th plane if $H_i \le Y_j$.

For the *i*th plane, please help Rar determine the total number of different flights he can possibly take, i.e. the total number of ways Rar can choose s and e such that $s \leq e$, and there are no mountains between s and e inclusive of height greater than Y_i .

Input

Your program must read from standard input.

The first line of input will contain two integers, N and Q.

The second line of input will contain N integers, H_1, \ldots, H_N .

The third line of input will contain Q integers, Y_1, \ldots, Y_Q .

Output

Your program must print to standard output.

The output should contain Q lines with one integer each, with the number on the *i*th line indicating the total number of different flights Rar can take with his *i*th plane.

Subtasks

The maximum execution time on each instance is 1.0s. For all testcases, the input will satisfy the following bounds:

• $1 \le N, Q, H_i, Y_i \le 10^6$

Your program will be tested on input instances that satisfy the following restrictions:

Subtask	Marks	Additional Constraints
1	3	N = 2, Q = 1
2	10	$1 \le N, Q \le 30$
3	12	$1 \le N, Q \le 200$
4	15	$1 \le N, Q \le 10^3$
5	5	$1 \le N \le 10^5, Q = 1, Y_i = 10^6$
6	9	$1 \le N, Q \le 10^5, H_i = i$
7	14	$1 \le N, Q \le 10^5, H$ is strictly increasing.
8	10	$1 \le N \le 10^5, Q = 1$
9	11	$1 \le N, Q \le 10^5$
10	11	-

Sample Testcase 1

This testcase is valid for subtasks 2, 3, 4, 9 and 10.

Input	Output
6 3	5
1 3 2 4 1 2	9
2 3 4	21

Sample Testcase 1 Explanation

For the first plane, 5 flights are possible: (1, 1), (3, 3), (5, 5), (5, 6), (6, 6). For the second plane, 9 flights are possible: (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (5, 5), (5, 6), (6, 6). For the last plane, all 21 flights are possible.

Sample Testcase 2

This testcase is valid for subtasks 2, 3, 4, 9 and 10.

Input	Output
6 3	0
2 2 5 2 2 2	9
1 2 10	21

Sample Testcase 3

This testcase is valid for all subtasks.

Input	Output
2 1	3
1 2	
100000	