

Task Euklid

It is rarely mentioned that Euclid's grandma was from Vrsi in Croatia. It is from there that Euclid's less known (but equally talented in his youth) cousin Edicul^{*} comes from.

It happened one day that they were playing "invent an algorithm". Edicul writes two positive integers on the sand. Then he does the following: while neither number on the sand is 1, he marks them as (a, b) so that $a \ge b$. Then the numbers are erased and he writes $(\lfloor \frac{a}{b} \rfloor, b)$ on the sand, and repeats the process. When one of the two numbers becomes 1, the other is the results of his algorithm.

Formally, if a and b are positive integers, the result R(a, b) of Edicul's algorithm is:

$$R(a,b) = \begin{cases} R(b,a) & \text{if } a < b, \\ R(\lfloor \frac{a}{b} \rfloor, b) & \text{if } a \ge b > 1, \\ a & \text{if } a \ge b = 1. \end{cases}$$

Euclid thinks for a while, and says: "Edicul, I have a better idea...", and the rest is history. Unfortunately, Edicul never became famous for his idea in number theory. This sad story inspires the following problem:

Given positive integers g and h, find positive integers a and b such that their greatest common divisor is g, and the result of Edicul's algorithm R(a, b) is h.

Input

The first line contains a single integer t $(1 \le t \le 40)$ – the number of independent test cases.

Each of the following t lines contains two positive integers g_i and h_i ($h_i \ge 2$).

Output

Output t lines in total. For the *i*-th testcase, output positive integers a_i and b_i such that $gcd(a_i, b_i) = g_i$ and $R(a_i, b_i) = h_i$.

The numbers in the output must not be larget than 10^{18} . It can be proven that for the given constraints, a solution always exists.

If there are multiple solutions for some testcase, output any of them.

Scoring

In all subtasks, $1 \le g \le 200\ 000$ and $\mathbf{2} \le h \le 200\ 000$.

Subtask	Points	Constraints	
1	4	g = h	
2	8	h = 2	
3	8	$g = h^2$	
4	15	$g,h\leq 20$	
5	40	$g,h \leq 2000$	
6	35	No additional constraints.	
2 3 4 5 6	8 8 15 40 35	h = 2 $g = h^2$ $g, h \le 20$ $g, h \le 2000$ No additional constraints.	

*This sets up a pun in Croatian. The translation is a bit bland, sorry for that.

Examples

input	input
1 1 4	2 3 2
output	5 5 output
99 23	9 39 5 5

Clarification of the first example:

The integers 99 and 23 are coprime, i.e. their greatest common divisor is 1. We have $\lfloor \frac{99}{23} \rfloor = 4$, thus R(99,23) = R(4,23) = R(23,4). Then $\lfloor \frac{23}{4} \rfloor = 5$, so R(23,4) = R(5,4) = R(1,4) = R(4,1) = 4.

Clarification of the second example:

For the first testcase, gcd(9,39) = 3 and R(9,39) = 2.

For the second testcase, gcd(5,5) = 5 and R(5,5) = 5.