
Day 2 Task 1: Memory

A game called Memory is played using 50 cards. Each

card has one of the letters from A to Y (ASCII 65 to 89)

printed on the face, so that each letter appears on

exactly two cards. The cards are shuffled into some

random order and dealt face down on the table.

Jack plays the game by turning two cards face up so the letters are visible. For each of

the 25 letters Jack gets a candy from his mother the first time he sees both copies of

the letter on the two face up cards. For example, the first time Jack turns over both

cards that contain the letter M, he gets a candy. Regardless of whether the letters were

equal or not, Jack then turns both cards face down again. The process is repeated until

Jack receives 25 candies – one for each letter.

You are to implement a procedure play that plays the game. Your implementation

should call the procedure faceup(C) which is implemented by the grader. C is a

number between 1 and 50 denoting a particular card you wish to be turned face up.

The card must not currently be face up. faceup(C) returns the character that is printed

on the card C.

After every second call to faceup, the grader automatically turns both cards face down

again.

Your procedure play may only terminate once Jack has received all 25 candies. It is

allowed to make calls to faceup(C) even after the moment when Jack gets the last

candy.

Example

The following is one possible sequence of calls your procedure play could make, with

explanations.

Call Returned value Explanation

faceup(1) 'B' Card 1 contains B.

faceup(7) 'X' Card 7 contains X. The letters are not equal.

The grader automatically turns cards 1 and 7 face down.

faceup(7) 'X' Card 7 contains X.

faceup(15) 'O' Card 15 contains O. The letters are not equal.

The grader automatically turns cards 7 and 15 face down.

faceup(50) 'X' Card 50 contains X.

faceup(7) 'X' Card 7 contains X. Jack gets his first candy.

The grader automatically turns cards 50 and 7 face down.

faceup(7) 'X' Card 7 contains X.

faceup(50) 'X' Card 50 contains X. Equal letters, but Jack gets no candy.

The grader automatically turns cards 7 and 50 face down.

faceup(2) 'B' Card 2 contains B.

...

(some function calls were omitted)

...

faceup(1) 'B' Card 1 contains B.

faceup(2) 'B' Card 2 contains B. Jack gets his 25th candy.

Subtask 1 [50 points]

Implement any strategy that obeys the rules of the game and finishes it within the time

limit.

For example, there is a simple strategy that always makes exactly 2*(49+48+...+2+1)

= 2450 calls to faceup(C).

Subtask 2 [50 points]

Implement a strategy that finishes any possible game with at most 100 calls

to faceup(C).

Implementation Details

• Implementation folder: /home/ioi2010-contestant/memory/

• To be implemented by contestant: memory.c or memory.cpp or memory.pas

• Contestant interface: memory.h or memory.pas

• Grader interface: grader.h or graderlib.pas

• Sample grader: grader.c or grader.cpp or grader.pas and graderlib.pas

• Sample grader input: grader.in.1.

Note: the input file contains one line with 50 characters denoting the letters on

the cards, in order, from 1 to 50.

• Expected output for sample grader input: if your implementation is correct, the

output file will contain OK n where n is the number of calls to faceup(C).

• Compile and run (command line): runc grader.c or runc grader.cpp or runc
grader.pas

• Compile and run (gedit plugin): Control-R, while editing any implementation

file.

• Submit (command line): submit grader.c or submit grader.cpp or submit
grader.pas

• Submit (gedit plugin): Control-J, while editing any implementation or grader

file.

