Problem C. Intergalactic ship

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

You are given a sequence a of n integer numbers $a_1, a_2, ..., a_n$.

In addition, you are given a set S of q updates. Each update is defined by three numbers l, r, and x. An update consists of the operation xor with the number x applied to all the numbers in the segment [l, r] of the sequence a. Formally, for each $l \leq i \leq r$ the following substitution is performed:

$$a_i := a_i \oplus x$$

For a set of updates S, let's define K(S) as the sum of $sum(i, j)^2$ over all possible segments of the sequence a after applying all updates from the set S to the given sequence:

$$K(S) = \sum_{1 \le i \le j \le n} sum(i, j)^2$$

where sum(i, j) is defined as the sum of elements in the segment [i, j]:

$$sum(i,j) = \sum_{x=i}^{j} a_x$$

Your task is to find the sum over all 2^q subsets of the given set of updates S. Formally, if P is the set of all subsets of the set S of q updates, you have to find the following:

$$\sum_{subset \in P} K(subset)$$

Input

The first line of input contains single integer n $(1 \le n \le 1000)$ — the number of elements in the sequence. The second line contains n space-separated integer numbers $a_1, a_2, ..., a_n$ $(0 \le a_i < 128$ for each $1 \le i \le n)$ — the given sequence.

The third line contains single integer q $(1 \le q \le 10^5)$ — the number of updates.

Each of the next q lines contains three space-separated integer numbers l, r, and x $(1 \le l \le r \le n, 0 \le x < 128)$ — descriptions of the updates.

Output

Output single integer — answer to the problem. As soon as the answer may be very large, output it modulo $10^9 + 7$.

Scoring

This problem consists of nine subtasks:

- 1. $1 \le n \le 10, 1 \le q \le 10, 0 \le a_i, x < 128$, for all $1 \le i \le n$. Scored 4 points.
- 2. $1 \le n \le 100, 1 \le q \le 10, 0 \le a_i, x < 128$, for all $1 \le i \le n$. Scored 5 points.
- 3. $1 \le n \le 100, 1 \le q \le 100000, 0 \le a_i, x < 32$, for all $1 \le i \le n$. It is guaranteed that length of all update segments is equal to 1. Scored 6 points.
- 4. $1 \le n \le 1000$, $1 \le q \le 500$, $0 \le a_i, x < 128$, for all $1 \le i \le n$. It is guarenteed that all update segments do not intersect pairwise. Scored 9 points.
- 5. $1 \le n \le 30, 1 \le q \le 20, 0 \le a_i, x < 32$, for all $1 \le i \le n$. Scored 8 points.
- 6. $1 \le n \le 30, 1 \le q \le 5000, 0 \le a_i, x < 32$, for all $1 \le i \le n$. Scored 11 points.
- 7. $1 \le n \le 300, 1 \le q \le 300, 0 \le a_i, x < 128$, for all $1 \le i \le n$. Scored 19 points.
- 8. $1 \le n \le 500, 1 \le q \le 100000, 0 \le a_i, x < 128$, for all $1 \le i \le n$. Scored 30 points.
- 9. $1 \le n \le 1000, 1 \le q \le 100000, 0 \le a_i, x < 128$, for all $1 \le i \le n$. Scored 8 points.

Examples

standard input	standard output
2	52
1 3	
1	
1 2 2	
5	1001
1 2 3 4 5	
0	

Note

The xor operation is the bitwise exclusive OR.

In the first sample, there are $2^1 = 2$ possible sequences after applying updates — with applying the single given operation and without. In both sequences the resulting sums are equal to 26.

In the second sample, set S is empty, the set of all subsets consists of a single element \emptyset — empty set, i.e. there are no updates and you have to find $K(\emptyset)$ for the given sequence a.