Problem F. Monkey and Apple-trees

Input file: f.in
Output file: f.out
Time limit: 2 seconds
Memory limit: 256 megabytes

Everyone knows that the yummiest fruit in the world is an apple. Even the monkey Chris knows that. There are many apple-trees in the a forest located along the river and numerated consecutively starting from 1. Sometimes Chris comes to the forest, chooses a group of apple-trees growing consecutively (selected interval) and counts the amount of apple-trees with red-ripen apples among them. Sometimes apples on a few consequtive apple-trees have red-ripen before his next arrival.

You have to answer how many apple-trees in the selected interval have red-ripen apples at each Chris's arrival. At the beginning all the apples are unripen.

Input

In the first line of input file an integer M is given — number of events $(1 \le M \le 100000)$. The following M lines contain description of events — each contains three integers D_i , X_i , Y_i $(1 \le D_i \le 2, X_i \le Y_i)$. If the $D_i = 1$, then the event is Chris's arrival, if the $D_i = 2$ — red-ripening of all apples in the selected interval of the apple-trees. Other two numbers X_i and Y_i , describe the interval for the event.

For calculating the limits of the interval there is an additional number C. At the beginning C = 0. An interval for the event is interval from $X_i + C$ to $Y_i + C$ inclusively. It's guaranteed that $1 \le X_i + C$, $Y_i + C \le 10^9$. If the event is apples red-ripening then C doesn't change. If the event is Chris's arrival, then as the result C becomes equal to the amount of red-ripen apple-trees he has counted.

Output

For each of Chris's arrival output one line with one number in it — the task answer.

Examples

f.in	f.out
3	6
2 5 8	
2 7 10	
1 1 10	
4	2
2 2 3	4
1 1 3	
2 2 3	
1 -1 3	
6	3
2 1 7	2
2 10 12	0
1 7 11	
2 11 13	
1 8 10	
1 15 17	

Note

In 35% testcases $M \le 10\,000$, $1 \le X_i + C$, $Y_i + C \le 10^6$.

In 60% testcases $1 \le X_i + C, Y_i + C \le 10^7$.