
coreputer
IOI 2023 Practice Tasks

English (ISC)

Coreputer
Coreputer, the brand new computing machine has N cores numbered from 0 to N −1. Recent
maintenance revealed that some of the cores are malfunctioning. It is unknown which specific
cores are malfunctioning, but there is at least one malfunctioning core.

To find the malfunctioning cores, Coreputer can run diagnostic scans. In each scan, the user tags
a (possibly empty) group of distinct cores T [0],… ,T [l −1] for some 0 ≤ l ≤ N . The rest of the
cores are untagged. Coreputer then benchmarks the tagged cores and the untagged ones. Finally,
it reports which of the two groups contains a greater number of malfunctioning cores, or that the
two groups contain an equal number of malfunctioning cores. Note that an empty group contains
0 malfunctioning cores.

Your task is to find the malfunctioning cores by running diagnostic scans on Coreputer.

Implementation Details

You should implement the following procedure.

 int[] malfunctioning_cores(int N)

N : the number of cores.
This procedure should return an array c = [c[0], c[1],… , c[N −1]], where for each i from 0
to N −1, inclusive, c[i] = 1 if core i is malfunctioning, and c[i] = 0 otherwise.
This procedure is called exactly once for each test case.

The above procedure can make calls to the following procedure:

 int run_diagnostic(int[] T)

T : an array of distinct cores.
This procedure returns

1 if there are more tagged cores than untagged cores which are malfunctioning;
0 if the number of tagged and untagged malfunctioning cores are equal;
−1 if there are fewer tagged cores than untagged cores which are malfunctioning.

This procedure can be called at most 32 times in each test case.

coreputer (1 of 3)

The grader is not adaptive, meaning that the set of malfunctioning cores is fixed before a call to
malfunctioning_cores is made.

Example

Consider a scenario when there are N = 4 cores, and only core 2 is malfunctioning.

Procedure malfunctioning_cores is called the following way:

 malfunctioning_cores(4)

The procedure may call run_diagnostic as follows.

Call Tagged cores Untagged cores Return value

 run_diagnostic([0]) 0 1,2,3 −1

 run_diagnostic([1, 2]) 1, 2 0, 3 1

 run_diagnostic([2]) 2 0, 1, 3 1

In the first call, there are no malfunctioning tagged cores, and one untagged core is
malfunctioning, so the procedure returns −1.

After the third call returns 1, it is clear that at least one tagged core (that is, core 2) is
malfunctioning. But then, the number of untagged malfunctioning cores must be zero, so we
conclude that no other core is malfunctioning.

Therefore, the procedure malfunctioning_cores should return [0, 0, 1, 0].

Constraints

2 ≤ N ≤ 16

Subtasks

1. (20 points) N = 2
2. (40 points) The number of malfunctioning cores is even.
3. (40 points) No additional constraints.

If, in any of the test cases, the calls to the procedure run_diagnostic do not conform to the

constraints described in Implementation Details, or the return value of malfunctioning_cores is

incorrect, the score of your solution for that subtask will be 0.

coreputer (2 of 3)

In each subtask, you can obtain a partial score. Let q be the maximum number of calls to the
procedure run_diagnostic among all test cases. Then, you will get a percentage of the subtask's

score according to the following table:

Condition Percentage

24 < q ≤ 32 50%

18 < q ≤ 24 75%

q ≤ 18 100%

Sample Grader

The sample grader reads the input in the following format:

line 1: N
line 2: M [0]M [1] … M [N −1]

where for each i from 0 to N −1, inclusive, M [i] = 1 if core i is malfunctioning, and M [i] = 0

otherwise.

Before calling malfunctioning_cores , the sample grader checks whether there is at least one

malfunctioning core. If this condition is not met, it prints the message No Malfunctioning

Cores and terminates.

If the sample grader detects a protocol violation, the output of the sample grader is Protocol

Violation: <MSG> , where <MSG> is one of the error messages:

invalid array : in a call to run_diagnostic , array T
has more than N elements, or
contains an element that is not an integer between 0 and N −1, inclusive, or
contains the same element at least twice.

too many calls : the number of calls made to run_diagnostic exceeds 32.

Otherwise, let the elements of the array returned by malfunctioning_cores be

c[0], c[1],… , c[n −1] for some nonnegative n. The output of the sample grader is in the following
format:

line 1: c[0] c[1] … c[n −1]
line 2: the number of calls to run_diagnostic

coreputer (3 of 3)

