
hack
APIO Tasks

English (ISC)

Hack! (hack)
It has been an hour into a Codeforces contest, when you notice that another contestant in your
room has solved a problem using an unordered_set . Time to hack!

You know that unordered_set uses a hash table with n buckets, which are numbered from 0 to

n −1. Unfortunately, you do not know the value of n and wish to recover it.

When you insert an integer x into the hash table, it is inserted to the (x mod n) -th bucket. If
there are b elements in this bucket prior to the insertion, this will cause b hash collisions to occur.

By giving k distinct integers x[0],x[1],… ,x[k−1] to the interactor, you can find out the total
number of hash collisions that had occurred while creating an unordered_set containing the

numbers. However, feeding this interactor k integers in one query will incur a cost of k.

For example, if n = 5, feeding the interactor with x = [2, 15, 7, 27, 8, 30] would cause 4 collisions in
total:

Operation New collisions Buckets

initially − [], [], [], [], []

insert x[0] = 2 0 [], [], [2], [], []

insert x[1] = 15 0 [15], [], [2], [], []

insert x[2] = 7 1 [15], [], [2, 7], [], []

insert x[3] = 27 2 [15], [], [2, 7, 27], [], []

insert x[4] = 8 0 [15], [], [2, 7, 27], [8], []

insert x[5] = 30 1 [15, 30], [], [2, 7, 27], [8], []

Note that the interactor creates the hash table by inserting the elements in order into an initially
empty unordered_set , and a new empty unordered_set will be created for each query. In other

words, all queries are independent.

Your task is to find the number of buckets n using total cost of at most 1 000 000.

Implementation details

hack (1 of 4)

You should implement the following procedure:

 int hack()

This procedure should return an integer – the hidden value of n.
For each test case, the grader may call this function more than once. Each call should be
processed as a separately new scenario.

Within this procedure, you may call the following procedure:

 long long collisions(std::vector<long long> x)

x: an array of distinct numbers, where 1 ≤ x[i] ≤ 10 for each i.
This function returns the number of collisions created by inserting the elements of x to an
unordered_set .
This procedure can be called multiple times. The sum of length of x over all calls within one
call to hack() must not exceed 1 000 000.

Note: Since the procedure hack() will be called more than once, contestants need to pay

attention to the impact of the remaining data of the previous call on the current call,
especially the state stored in global variables.

The cost limit of 1 000 000 applies to each test case. In general, if there are t calls to hack() , you

may use a total cost of no more than t×1 000 000, with each individual call to hack() using a

cost no more than 1 000 000.

The interactor is not adaptive, i.e. the values of n are fixed before the start of interaction.

Example

Suppose, there are 2 multitests. The grader will make a following call:

 hack()

Let's say, within the function, you make following calls:

Call Returned value

 collisions([2, 15, 7, 27, 8, 30]) 4

 collisions([1, 2, 3]) 0

 collisions([10, 20, 30, 40, 50]) 10

18

hack (2 of 4)

After that, if you find that the value of n is 5, the procedure hack() should return 5.

Then grader will make another call:

 hack()

Let's say, within the function, you make following calls:

Call Returned value

 collisions([1, 3]) 1

 collisions([2, 4]) 1

The only n which satisfies the queries is 2. So, the procedure hack() should return 2.

Constraints

1 ≤ t ≤ 10, where t is the number of multitests.
2 ≤ n ≤ 10
1 ≤ x[i] ≤ 10 for each call to collisions() .

Subtasks

1. (8 points) n ≤ 500 000
2. (17 points) n ≤ 1 000 000
3. (75 points) No additional constraints.

In the last subtask, you can get partial score. Let q be the maximum total cost among all
invocations of hack() over every test case of the subtask. Your score for this subtask is calculated

according to the following table:

Condition Points

1 000 000 < q 0

110 000 < q ≤ 1 000 000 75 ⋅ log ()

q ≤ 110 000 75

If, in any of the test cases, the calls to the procedure collisions() do not conform to the

constraints described in Implementation Details, or the number returned by hack() is incorrect,

the score of your solution for that subtask will be 0.

Sample Grader

9

18

50 q−90000
106

hack (3 of 4)

The sample grader reads the input in the following format:

line 1: t

Then, t lines follow, each containing a value of n:

line 1: n

For each test case, let m be the return value of hack() , and c be the total cost of all queries. The

sample grader prints your answer in the following format:

line 1: m c

hack (4 of 4)

