Problem D. Segments

Input file: standard input
Output file: standard output

Time limit: 3 seconds (because of slow server)

Memory limit: 40 megabytes

There is a multiset of segments S. Difference between multiset and set is that multiset allows multiple instances of one segment, unlike a set.

Given two integer numbers n and t. You have n operations of following types that are made over the multiset:

- 1. Insert segment [l, r] into the multiset S. The segment is assigned with id minimum positive integer number that was not assigned to any other segment before.
- 2. Erase the segment with assigned number id from the multiset S. It is guaranteed that at the moment of erasing there is a segment in the multiset S with assigned number id.
- 3. Count the number of segments from the multiset S that has at least k integer points in common with given segment [l, r].

Integer point x is common for both segments $[l_i, r_i]$ and $[l_j, r_j]$, if $l_i \leq x \leq r_i$ and $l_j \leq x \leq r_j$.

Input

The first line of input contains two integer numbers n and t $(1 \le n \le 2 \cdot 10^5, 0 \le t \le 1)$ — number of operations and constant number. Each of next n lines describes one query.

- 1. Queries of first type are given in following format: 1 a_i b_i $(0 \le a_i, b_i \le 2 \cdot 10^9)$.
- 2. Queries of second type are given in following format: $2 id_i (1 \le id_i \le n)$.
- 3. Queries of third type are given in following format: $a_i b_i k_i (0 \le a_i, b_i, k_i \le 2 \cdot 10^9)$.

Please note that end points of segments $[l_i, r_i]$ for queries of type 1 and 3 are **encoded**, in order to decode them you need to perform the following transformations:

$$l_i = (a_i \oplus (t * lastans))$$
 $r_i = (b_i \oplus (t * lastans))$

where lastans — last answer to the query of type 3 (initially lastans equals to 0). If it turned out that l_i is greater than r_i , you should swap the values of l_i and r_i .

It is guaranteed that there will be at least one query of type 3 in input.

Here \oplus denotes the bitwise XOR operation.

Consider that problem has unusual memory limit.

Output

For each query of type 3 print answer in separate line.

Scoring

This task contains six subtasks:

- 1. $n < 5 \cdot 10^3$. Scored 7 points.
- 2. $n \le 10^5$. First comes queries of type 1, then of type 3 and there is no query of type 2. Scored 15 points.
- 3. $n \leq 2 \cdot 10^5$, $k_i = 1$ for all third type queries. Scored 16 points.
- 4. $n \le 10^5$, t = 0. Scored 17 points.
- 5. $n \leq 10^5$. Scored 20 points.

6. $n \le 2 \cdot 10^5$. Scored 25 points.

Examples

standard input	standard output
6 1	0
1 1 2	2
3 2 4 2	0
1 3 5	
3 2 3 1	
2 1	
3 0 3 1	
6 0	0
1 3 10	2
1 3 5	
3 6 10 6	
2 1	
1 3 10	
3 6 4 2	