

Task 4: Curtains

Benson the Rabbit is organizing a performance on his plane!

He has a stage with n sections numbered 1 to n from left to right. He also has m curtains numbered from 1 to m.

Each of these m curtains can be lowered. Lowering curtain i covers sections l[i] to r[i]. A **curtain configuration** is a set of lowered curtains. Given a curtain configuration, a section x $(1 \le x \le n)$ is **covered** if and only if there exists a **lowered** curtain i such that $l[i] \le x \le r[i]$.

Benson wants to give a total of q performances, numbered from 1 to q. For each performance j, Benson requires a curtain configuration such that the sections s[j] to e[j] are covered and nothing else is covered. More formally, for each $1 \le x \le n$,

- If $s[j] \le x \le e[j]$, section x is covered.
- Otherwise, section x is not covered.

For each of these q performances, help Benson to determine if there exists a curtain configuration satisfying his requirements.

Input format

Your program must read from standard input.

The first line of input will contain 3 spaced integers n, m and q, representing the number of sections, curtains and performances respectively.

The next m lines of input will contain 2 spaced integers each. The i-th of these lines will contain l[i] and r[i] respectively, describing the range of sections that curtain i can cover.

The next q lines of input will contain 2 spaced integers each. The j-th of these lines will contain s[j] and e[j] respectively, describing the range of sections that need to be covered for performance j.

Output format

Output q lines, the j-th of which should contain YES if it is possible to cover the required sections for the j-th performance using the curtains, and NO otherwise.

Subtasks

For all subtasks, it is guaranteed that:

- $1 \le n, m, q \le 500\ 000$
- $1 \le l[i] \le r[i] \le n$ (for all $1 \le i \le m$)
- $1 \le s[j] \le e[j] \le n$ (for all $1 \le j \le q$)

Your program will be tested on input instances that satisfy the following restrictions:

Subtask	Marks	Additional Constraints
1	3	$1 \le n, m, q \le 200$
2	6	$1 \le n, m, q \le 2000$
3	15	$1 \le n \le 2000$
4	20	s[j] = 1
5	36	$1 \le n, m, q \le 100\ 000$
6	20	No additional restrictions

Sample Testcase 1

This testcase is valid for all subtasks.

Input	Output
6 2 3	NO
1 2	YES
3 4	NO
1 3	
1 4	
1 5	

Sample Testcase 1 Explanation

Benson has 6 sections and 2 curtains. Curtain 1 covers sections 1 and 2 while curtain 2 covers sections 3 and 4.

It is not possible to exactly cover sections 1 to 3. It is also not possible to exactly cover sections 1 to 5. However, he can use both curtains to cover sections 1 to 4 exactly.

Sample Testcase 2

Input	Output
10 10 10	NO
6 9	NO
6 7	YES
1 6	NO
10 10	YES
5 9	NO
3 9	NO
2 10	NO
5 7	NO
9 10	YES
5 10	
7 8	
4 7	
1 6	
2 7	
3 9	
7 7	
2 9	
4 9	
6 6	
5 7	