
mars
APIO 2022 Tasks

English (ISC)

Mars
It's well known that the Pharaohs were the first to reach outer space. They launched the first spaceship to set

foot on the planet Thutmus I (commonly known as Mars nowadays). The surface of the planet can be

modeled as a (2n +1) × (2n +1) grid of square cells with each cell containing either land or water. The

state of the cell located in the i-th row and j-th column (0 ≤ i, j ≤ 2 ⋅ n) is denoted by s[i][j] =' 1 ' if it

contains land, and s[i][j] =' 0 ' if it contains water.

Two land cells are said to be connected if there is a path consisting of land cells between them with every

two consecutive cells sharing an edge. An island on the planet is defined as a maximal set of land cells such

that every two cells of the set are connected.

The spaceship's mission was to count the number of islands on the planet. However, the task was not easy

due to the spaceship's ancient computer. The computer had a memory h which stored data in the form of a

two-dimensional array of size (2n +1) × (2n +1) where each element of the array can store a binary

string of length 100 where each character is either '0' (ASCII 48) or '1' (ASCII 49). Initially, the first bit of

each memory cell stores the state of each cell of the grid, h[i][j][0] = s[i][j] (for all 0 ≤ i, j ≤ 2 ⋅ n). All

other bits of h are initially '0' (ASCII 48).

To process the data stored in the memory, the computer can only access a 3 × 3 portion of the memory and

overwrite the value at the top-left cell of that portion. More formally, the computer can access the values at

h[i..i +2][j..j +2] (0 ≤ i, j ≤ 2 ⋅ (n −1)) and overwrite the value at h[i][j]. This process will later be

referred to as process cell (i, j).

Coping with the computer's limitations, the Pharaohs devised the following mechanism:

The computer will process the memory through n phases.
In phase k (0 ≤ k ≤ n −1), let m = 2 ⋅ (n − k−1), the computer will process cell (i, j) for all
0 ≤ i, j ≤m, in increasing order of i, and for each i, in increasing order of j . In other words, the
computer will process the cells in the following order: (0, 0), (0, 1),⋯ , (0,m),
(1, 0), (1, 1),⋯ , (1,m),⋯ , (m, 0), (m, 1),⋯ , (m,m).
In the last phase (k = n −1), the computer will only process cell (0, 0). After which, the value written
at h[0][0] should be equal to the number of islands on the planet in binary where the least significant
bit in the number is store in the first character of the string.

The diagram below shows how the computer processes a memory of size 5 × 5 (n = 2). The blue cell

demonstrates the cell being overwritten, and the colored cells demonstrate the subarray being processed.

During phase 0, the computer will process the below subarrays in the following order:

mars (1 of 5)

During phase 1, the computer will process only one subarray:

Your task is to implement a method that will allow the computer to calculate the number of islands on the

planet Thutmus I given the way it operates.

Implementation details

You should implement the following procedure:

 string process(string[][] a, int i, int j, int k, int n)

a: a 3 × 3 array denoting the subarray being processed, in particular, a = h[i..i +2][j..j +2], Where
each element of a is a string of length exactly 100 and each character will be either '0' (ASCII 48) or
'1' (ASCII 49).
i, j : the row and column number of the cell the computer is currently processing.
k: the current phase number.
n: the total number of phases, and the dimensions of the planet's surface which consists of
(2n +1) × (2n +1) cells.
This procedure should return a binary string of length 100. The returned value will be stored in the
computer's memory at h[i][j].
The last call to this procedure will occur when k = n −1. During this call, the procedure should return
the number of islands on the planet in binary representation where the least significant bit is
represented by the character at index 0 (the first character of the string) and the second least
significant bit is at index 1 and so on.
This procedure must be independent of any static or global variables, and its return value should only
depend on the parameters passed to it.

Each test case involves T independent scenarios (i.e., different planets' surfaces). The behavior of your

implementation for each scenario must be independent of the order of the scenarios, as the calls to the

process procedure for each scenario might not happen consecutively. However, it's guaranteed that for

each scenario, the process calls occur in the sequence specified in the statement.

Additionally, for each test case, a number of instances of your program will be started simultaneously. The

memory and CPU time limits are for all these instances combined. Any deliberate attempt to pass data out-

of-band between these instances is considered cheating and will be cause for disqualification.

mars (2 of 5)

In particular, any information saved to static or global variables during a call to the process procedure is not

guaranteed to be available within the next procedure calls.

Constraints

1 ≤ T ≤ 10
1 ≤ n ≤ 20
s[i][j] is either ' 0 '(ASCII 48) or ' 1 '(ASCII 49) (for all 0 ≤ i, j ≤ 2 ⋅ n)
Length of h[i][j] is exactly 100 (for all 0 ≤ i, j ≤ 2 ⋅ n)
Each character of h[i][j] is either '0' (ASCII 48) or '1' (ASCII 49) (for all 0 ≤ i, j ≤ 2 ⋅ n)

For each call to the process procedure:

0 ≤ k ≤ n −1
0 ≤ i, j ≤ 2 ⋅ (n − k−1)

Subtasks

1. (6 points) n ≤ 2
2. (8 points) n ≤ 4
3. (7 points) n ≤ 6
4. (8 points) n ≤ 8
5. (7 points) n ≤ 10
6. (8 points) n ≤ 12
7. (10 points) n ≤ 14
8. (24 points) n ≤ 16
9. (11 points) n ≤ 18

10. (11 points) n ≤ 20

Examples

Example 1

Consider the case where n = 1 and s is as follows:

 '1' '0' '0'

'1' '1' '0'

'0' '0' '1'

In this example, the planet's surface consists of 3 × 3 cells and 2 islands. There will be only 1 phase of calls

to the process procedure.

During phase 0, the grader will call the process procedure exactly once:

 process([["100","000","000"],["100","100","000"],["000","000","100"]],0,0,0,1)

mars (3 of 5)

Notice that only the first 3 bits of each cell of h are shown.

This procedure call should return "0100..." (the omitted bits are all zeros), where0010 in binary equals

2 in decimal. Note that there are 96 zeros omitted and replaced by

Example 2

Conside the case where n = 2 and s is as follows:

 '1' '1' '0' '1' '1'

'1' '1' '0' '0' '0'

'1' '0' '1' '1' '1'

'0' '1' '0' '0' '0'

'0' '1' '1' '1' '1'

In this example, the planet's surface consists of 5 × 5 cells and 4 islands. There will be 2 phases of calls to

the process procedure.

During phase 0, the grader will call the process procedure 9 times:

 process([["100","100","000"],["100","100","000"],["100","000","100"]],0,0,0,2)

process([["100","000","100"],["100","000","000"],["000","100","100"]],0,1,0,2)

process([["000","100","100"],["000","000","000"],["100","100","100"]],0,2,0,2)

process([["100","100","000"],["100","000","100"],["000","100","000"]],1,0,0,2)

process([["100","000","000"],["000","100","100"],["100","000","000"]],1,1,0,2)

process([["000","000","000"],["100","100","100"],["000","000","000"]],1,2,0,2)

process([["100","000","100"],["000","100","000"],["000","100","100"]],2,0,0,2)

process([["000","100","100"],["100","000","000"],["100","100","100"]],2,1,0,2)

process([["100","100","100"],["000","000","000"],["100","100","100"]],2,2,0,2)

Let's assume the above calls returned the values "011", "000", "000", "111", "111", "011",

"110", "010", "111" respectively where the omitted bits are zeros. So, after phase 0 is finished, h will

be storing the following values:

 "011", "000", "000", "100", "100"

"111", "111", "011", "000", "000"

"110", "010", "111", "100", "100"

"000", "100", "000", "000", "000"

"000", "100", "100", "100", "100"

During phase 1, the grader will call the process procedure once:

 process([["011","000","000"],["111","111","011"],["110","010","111"]],0,0,1,2)

mars (4 of 5)

Finaly, this procedure call should return "0010000...." (the omitted bits are all zeros), where0000100

in binary equals 4 in decimal. Note that there are 93 zeros omitted and replaced by

Sample grader

The sample grader reads the input in the following format:

line 1: T
block i (0 ≤ i ≤ T −1): a block representing scenario i.

line 1: n
line 2 + j (0 ≤ j ≤ 2 ⋅ n): s[j][0] s[j][1] … s[j][2 ⋅ n]

The sample grader prints the result in the following format:

line 1 + i (0 ≤ i ≤ T −1): the last return value of the process procedure for the i-th scenario in
decimal.

mars (5 of 5)

