
pyramids

IOI 2024 Practice
English (HSC)

Pyramids

Everyone knows that Pharaoh Khufu was a great ruler, but many are unaware that he was also a
fashion enthusiast. Back in the day, he had N pyramids numbered from 0 to N − 1, with pyramid i
(0 ≤ i < N) consisting of A[i] stones. He also had the latest catalogue of the most fashionable
pyramids of the year. The catalogue consists of N pyramids numbered from 0 to N − 1, with
pyramid i (0 ≤ i < N) consisting of B[i] stones.

For any x and y, such that 0 ≤ x ≤ y < N , we define a range of pyramids A[x..y] to be a
sequence A[x],A[x + 1], … ,A[y]. We also define a range of pyramids B[x..y] analogously.

Every day, Khufu would browse the catalogue and choose two ranges of pyramids A[L..R] and
B[X ..Y] where R − L = Y − X (the values of L, R, X and Y may be different every day). After
that, he would like to know whether it's possible to transform his range A[L..R] to become equal to
the catalogue's range B[X ..Y]. Transforming a range consists of performing the following step an
arbitrary number of times: take one stone from a pyramid within the range and move it to an adjacent
pyramid within the range.

Your task is to answer multiple questions of the following form. Given four integers L, R, X , and Y ,
determine whether it is possible to transform A[L..R] into B[X ..Y]. Note that the number of
stones in each pyramid never actually changes, Khufu only wonders if one range could be
transformed into the other one.

Implementation Details

You should implement the following procedures:

void init(std::vector<int> A, std::vector<int> B)

A, B : two arrays of length N , describing the number of stones in Khufu's pyramids and in the
catalogue respectively.
This procedure is called exactly once, before any calls to can_transform.

bool can_transform(int L, int R, int X, int Y)

L, R: starting and ending indices of Khufu's pyramids range.
X , Y : starting and ending indices of catalogue's pyramids range.
This procedure should return true if it's possible to transform A[L..R] into B[X ..Y] and
false otherwise.

pyramids (1 of 3)

This procedure is called exactly Q times, once for each day.

Example

Consider the following call:

init([1, 2, 3, 4, 5], [2, 2, 2, 4, 5])

Assume the grader then calls can_transform(0, 2, 0, 2). This call should return whether
sequence of pyramids A[0..2] = [1, 2, 3] can be transformed into B[0..2] = [2, 2, 2]. This is
indeed possible by moving 1 stone from the last to the first pyramid in the range. Therefore, this call
should return true.

Assume the grader then calls can_transform(3, 4, 3, 4). This call should return whether we
can transform Khufu's pyramids A[3..4] = [4, 5] to B[3..4] = [4, 5] or not. The pyramids already
look alike. Therefore, this call should return true.

Assume the grader then calls can_transform(0, 2, 1, 3). This call should return whether
sequence of pyramids A[0..2] = [1, 2, 3] can be transformed into B[1..3] = [2, 2, 4]. This is not
possible, and thus this call should return false.

Constraints

1 ≤ N ≤ 100 000
1 ≤ Q ≤ 100 000
1 ≤ A[i] ≤ 10
1 ≤ B[i] ≤ 10

In each call to can_transform:

0 ≤ L ≤ R < N

0 ≤ X ≤ Y < N

R − L = Y − X

Subtasks

Subtask Score Additional Constraints

1 10 N ≤ 5; Q ≤ 10; A[i] ≤ 5, B[i] ≤ 5 for each i such that 0 ≤ i < N

2 40 N ≤ 1000; Q ≤ 1000

3 20 A[i] ≤ 2 and B[i] ≤ 2 for each i such that 0 ≤ i < N

4 30 No additional constraints.

9
9

pyramids (2 of 3)

Sample grader

Input format:

N Q

A[0] A[1] ... A[N-1]

B[0] B[1] ... B[N-1]

L[0] R[0] X[0] Y[0]

L[1] R[1] X[1] Y[1]

...

L[Q-1] R[Q-1] X[Q-1] Y[Q-1]

Here, L[i], R[i], X [i], and Y [i] denote the values of L, R, X and Y in the i-th call to
can_transform, respectively.

Output format:

P[0]

P[1]

...

P[Q-1]

Here, P [i] is 1 if the i-th call to can_transform returns true and 0 otherwise.

pyramids (3 of 3)

