Problem D. Special graph

Input file:	specialg.in
Output file:	<pre>specialg.out</pre>
Time limit:	1 second
Memory limit:	64 megabytes

You are given a directed graph with N vertices. The special thing about the graph is that each vertex has at most *one* outgoing edge. Your task is to answer the following two types of queries:

- 1 a delete the only edge outgoing from vertex a. It is guaranteed that the edge exists. $1 \le a \le N$
- 2 a b output the length of the shortest path from vertex a to vertex b, if the path exists. Otherwise output "-1" without quotes. $1 \le a, b \le N$

Input

First line of input contains a natural number $N \leq 10^5$ – the number of vertices in the graph.

The following line contains N integer numbers, *i*-th number is $next_i$ ($0 \le next_i \le N$), meaning that there is an edge from vertex *i* to vertex $next_i$. If $next_i = 0$, assume that there is no outgoing edge from vertex *i*.

Third line contains a natural number $M \leq 10^5$ — the number of queries.

The following M contain a query each. Queries are given in the manner described above.

Output

On the *i*-th line output the answer for the *i*-th query of type $2 \ a \ b$.

Examples

specialg.in	specialg.out
6	4
3 3 4 5 6 4	2
6	-1
2 1 6	-1
2 1 4	-1
2 1 2	
1 3	
2 1 6	
2 1 4	
4	1
4 4 1 3	3
5	1
224	
2 2 1	
1 4	
1 2	
2 3 1	

Note

In 50% testcases $N \le 2 \times 10^3, M \le 2 \times 10^4$.