별자리 3

입력 파일: standard input 출력 파일: standard output

JOI군은 야경 사진을 찍었다. 이 사진은 가로 N개, 세로 N개의 픽셀로 되어있는 사진이다. 왼쪽에서 x 번째 열, 아래에서 y 번째 행 $(1 \le x \le N, 1 \le y \le N)$ 에 있는 픽셀을 픽셀 (x,y) 라고 부른다.

이 사진의 각 픽셀은 빌딩, 밤하늘 혹은 별이다. 색은 각각 하얀색, 검은색, 노란색이다. 각 i에 $(1 \le i \le N)$ 대해 i번째 열에 있는 픽셀 중 아래에서 A_i 행 까지는 하얀색 픽셀이다. 별이 찍힌 노란색 픽셀은 M개가 있고, 그 중 j 번째 $(1 \le j \le M)$ 픽셀은 픽셀 (X_j, Y_j) 이다. 이 이외의 픽셀은 모두 밤하늘을 찍은 검은색 픽셀이다.

이 사진의 어느 직사각형 영역이 다음 두 조건을 만족한다면 별자리를 찍은 것이 된다.

- 직사각형 영역 내에 하얀색 픽셀이 존재하지 않는다.
- 직사각형 영역 내에 노란색 픽셀이 두 개 이상 존재한다.

JOI군은 별자리를 보는 것이 지쳤다. 그래서 JOI군은 노란색 픽셀 중 일부를 검은색으로 칠하는 것으로 어떤 직사각형 영역도 별자리를 찍은 것이 되지 않도록 하고 싶다. 하지만 너무 많은 노란색 픽셀을 없애 버린 경우 사진의 부자연스러움이 올라간다. 구체적으로는 j 번째 $(1 \le j \le M)$ 노란색 픽셀을 검은색으로 만들면 사진의 부자연스러움이 C_j 증가한다. 처음 사진의 부자연스러움은 0이다.

사진의 정보와 각 노란색 픽셀을 없앴을 때 증가하는 부자연스러움이 주어졌을 때, 어떤 직사각형 영역도 별자리를 찍은 것이 되지 않도록 하면서 노란색 픽셀을 지운 사진의 부자연스러움의 최솟값을 구하는 프로그램을 작성하여라.

입력 형식

표준 입력에서 다음과 같은 형식으로 주어진다. 모든 값은 정수이다.

N

 $A_1 \cdots A_N$

M

 $X_1 Y_1 C_1$

:

 $X_M Y_M C_M$

출력 형식

어떤 직사각형 영역도 별자리를 찍은 것이 되지 않도록 하면서 노란색 픽셀을 지울 때, 사진의 부자연스러움의 최솟값을 표준 출력으로 첫째 줄에 출력하여라.

제한

- $1 \le N \le 200\ 000$.
- $1 \le A_i \le N \ (1 \le i \le N)$.
- $1 \le M \le 200\ 000$.
- $1 \le X_j \le N \ (1 \le j \le M)$.
- $1 \le Y_j \le N \ (1 \le j \le M)$.
- $1 \le C_i \le 1\ 000\ 000\ 000\ (1 \le j \le M)$.
- $A_{X_i} < Y_j \ (1 \le j \le M)$.

• $(X_j, Y_j) \neq (X_k, Y_k) \ (1 \le j < k \le M).$

서브태스크 1 (14 점)

- $N \le 300$.
- $M \le 300$.

서브태스크 2 (21 점)

- $N \le 2000$.
- $M \le 2 000$.

서브태스크 3 (65 점)

추가 제한조건이 없다.

예제

standard input	standard output
5	2
1 3 4 2 3	
3	
1 5 3	
4 3 2	
2 4 2	

이 입력 예제에서, 픽셀 (1,5)을 왼쪽 아래의 정점, 픽셀 (2,4)를 오른쪽 아래의 정점으로 하는 직사각형 영역은 별자리를 찍은 것이다. 세 번째 노란색 픽셀을 검은색으로 만들면 사진의 부자연스러움은 2 증가하고 어떤 직사각형 영역도 별자리를 찍은 것이 되지 않는다. 이것이 최솟값이므로 2를 출력한다.

이 입력 예제의 사진은 (그림 1)에 대응된다.

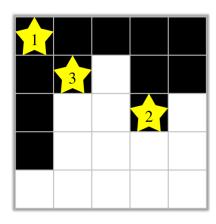


그림 1

standard input	standard output
7	16
5 6 2 3 6 7 6	
5	
7 7 5	
3 3 7	
3 7 10	
1 7 6	
4 7 8	

제 19회 일본 정보올림피아드 (JOI 2019/2020) 봄 캠프 / 선발 고사, 2019년 3월 19-23일, (도쿄 코마바, 요요기)

이 입력 예제에서, 세 번째와 네 번째 노란색 픽셀을 검은색으로 만들면 된다.

standard input	standard output
8	44
6 8 5 7 3 4 2 1	
10	
8 2 9	
6 6 7	
8 3 18	
5 8 17	
8 5 3	
5 5 3	
5 4 8	
1 8 13	
1 7 5	
7 4 13	