
perm
APIO 2022 Tasks

English (ISC)

Permutation
The Pharaohs use the relative movement and gravity of planets to accelerate their spaceships. Suppose

a spaceship will pass by n planets with orbital speeds p[0],p[1],… ,p[n −1] in order. For each planet,

the Pharaohs scientists can choose whether to accelerate the spaceship using this planet or not. To save

energy, after accelerating by a planet with orbital speed p[i], the spaceship cannot be accelerated using

any planet with orbital speed p[j] < p[i]. In other words, the chosen planets form an increasing
subsequence of p[0],p[1],… ,p[n −1]. A subsequence of p is a sequence that's derived from p by

deleting zero or more elements of p. For example [0], [], [0, 2] , and [0, 1, 2] are subsequences of

[0, 1, 2], but [2, 1] is not.

The scientists have identified that there are a total of k different ways a set of planets can be chosen to

accelerate the spaceship, but they have lost their record of all the orbital speeds (even the value of n).

However, they remember that (p[0],p[1],… ,p[n −1]) is a permutation of 0, 1,… ,n −1. A

permutation is a sequence containing each integer from 0 to n −1 exactly once. Your task is to find one

possible permutation p[0],p[1],… ,p[n −1] of sufficiently small length.

You need to solve the problem for q different spaceships. For each spaceship i, you get an integer k ,

representing the number of different ways a set of planets can be chosen to accelerate the spaceship.

Your task is to find a sequence of orbital speeds with a small enough length n such that there are

exactly k ways a subsequence of planets with increasing orbital speeds can be chosen.

Implementation details

You should implement the following procedure:

 int[] construct_permutation(int64 k)

k: is the desired number of increasing subsequences.
This procedure should return an array of n elements where each element is between 0 and n −1
inclusive.
The returned array must be a valid permutation having exactly k increasing subsequences.
This procedure is called a total q of times. Each of these calls should be treated as a separate
scenario.

Constraints

i

i

i

perm (1 of 3)

1 ≤ q ≤ 100
2 ≤ k ≤ 10 (for all 0 ≤ i ≤ q −1)

Subtasks

1. (10 points) 2 ≤ k ≤ 90 (for all 0 ≤ i ≤ q −1). If all permutations you used have length at most
90 and are correct, you receive 10 points, otherwise 0.

2. (90 points) No additional constraints. For this subtask, let m be the maximum permutation length
you used in any scenario. Then, your score is calculated according to the following table:

Condition Score

m ≤ 90 90

90 <m ≤ 120 90 −

120 <m ≤ 5000 80 −

m > 5000 0

Example

Example 1

Consider the following call:

 construct_permutation(3)

This procedure should return a permutation with exactly 3 increasing subsequences. A possible answer

is [1, 0], which has [] (empty subsequence), [0] and [1] as increasing subsequences.

Example 2

Consider the following call:

 construct_permutation(8)

This procedure should return a permutation with exactly 8 increasing subsequences. A possible answer

is [0, 1, 2].

Sample grader

The sample grader reads the input in the following format:

i
18

i

3
(m−90)

65
(m−120)

perm (2 of 3)

line 1: q
line 2 + i (0 ≤ i ≤ q −1): k

The sample grader prints a single line for each k containing the return value of

construct_permutation , or an error message if one has occurred.

i

i

perm (3 of 3)

