

3-1. 십자가 놓기

십자가는 큰 정사각형의 네 꼭짓점과 한 꼭짓점이 겹치는 합동인 작은 네 개의 정사각형이 잘린 도형이다. 아래 그림은 안지름이 d_i 이고 바깥지름이 d_o ($d_i < d_o$)인 십자가를 의미한다.

N개의 십자가 중에서 K개를 적절히 골라 중심이 (0,0)에 가고 변이 좌표축에 평행하도록 놓을 때, K개가 모두 겹치는 영역의 최대 넓이를 구하는 프로그램을 작성하여라.

요구 사항

다음 함수를 구현해야 한다. 각 테스트 케이스에 대해 그레이더는 이 함수를 한 번 호출한다.

int64 SelectCross (int K, int[] I, int[] 0)

- *K*: 선택하는 십자가의 수.
- I,O: 길이 N의 정수 배열. i ($0 \le i \le N-1$)번 십자가의 안지름은 I[i]이고 바깥지름은 O[i]이 다.
- 이 함수는 십자가 K개가 모두 겹치는 영역의 최대 넓이를 반환한다.
- 이 함수는 한 번 호출된다.

제한

- $2 \le N \le 200\,000$
- $1 \le K \le N$
- $1 \le I[i] < O[i] \le 1\,000\,000\,000\,(0 \le i \le N-1)$

부분문제

- 1. (8점) K=1.
- 2. (55점) $K \leq 20$.
- 3. (37점) 추가 제약조건은 없다.

예제

다음 호출을 고려해보자.

```
SelectCross(3, [1, 2, 1, 1, 2], [2, 4, 3, 4, 3])
```

정답은 5이다.

샘플 인터페이스

문제 페이지에서 샘플 코드를 다운로드받을 수 있다. 만약 Visual Studio나 Eclipse, Code::Blocks 와 같은 IDE 툴을 사용한다면 cross.cpp, cross.h, grader.cpp를 한 프로젝트에 넣어서 컴파일하면 된다. 터미널에서 코드를 컴파일한다면 대회 페이지에 있는 컴파일 명령어를 이용하면 된다.

답안을 제출할 때에는 cross.cpp를 제출하면 된다.

Input format

- line 1: N K
- line 2: $I[0] I[1] \cdots I[N-1]$
- line 2: $O[0] O[1] \cdots O[N-1]$

Output format

샘플 그레이더는 SelectCross 함수의 반환값을 출력한다.