Task Vepar

Two intervals of positive integers $\{a, a+1, \ldots, b\}$ and $\{c, c+1, \ldots, d\}$ are given. Determine whether the product $c \cdot (c+1) \cdot \cdot \cdot d$ is divisible by the product $a \cdot (a+1) \cdot \cdot \cdot b$.

Input

The first line contains a single integer t ($1 \le t \le 10$), the number of independent test cases

Each of the following t lines contains four positive integers a_i, b_i, c_i, d_i $(1 \le a_i \le b_i \le 10^7, 1 \le c_i \le d_i \le 10^7)$.

Output

Output t lines in total. For the i-th test case, output DA (Croatian for yes) if $a_i \cdot (a_i + 1) \cdots b_i$ divides $c_i \cdot (c_i + 1) \cdots d_i$, and output NE (Croatian for no) otherwise.

Scoring

In test cases worth 10 points it holds $a_i, b_i, c_i, d_i \leq 50$. In test cases worth additional 20 points it holds $a_i, b_i, c_i, d_i \leq 1000$. In test cases worth additional 10 points it holds $a_i = 1$.

Examples

input	input
2	6
9 10 3 6	1 2 3 4
2 5 7 9	1 4 2 3
	2 3 1 4
output	1 3 2 4
DA	19 22 55 57
NE	55 57 19 22
	output
	output DA
	_
	DA
	DA NE
	DA NE DA
	DA NE DA DA

Clarification of the first example:

We have $9 \cdot 10 = 90$ and $3 \cdot 4 \cdot 5 \cdot 6 = 360$. The answer is DA because 90 divides 360.

We calculate $2 \cdot 3 \cdot 4 \cdot 5 = 120$, which doesn't divide $7 \cdot 8 \cdot 9 = 504$. Thus the second answer is NE.