
nonogram

4.	Chessboard	Nonogram
There	 is	 a	 chessboard	 of	 size	 .	 The	 rows	 of	 the	 chessboard	 are	 numbered	
through	 ,	and	the	columns	are	numbered	 	through	 .	We	refer	to	the	cell	in
row	 	()	and	column	 	()	as	cell	 .	 Initially	cell	 	 is
colored	in	black	if	 	is	even,	white	otherwise.

Jinu	 additionally	 colored	 some	 of	 the	 white	 cells	 (possibly	 none)	 in	 the	 chessboard
black.	Then,	Jinu	made	a	nonogram	puzzle	from	the	chessboard.	Specifically:

For	each	row	 	(),	Jinu	wrote	the	lengths	of	the	runs	of	black	cells	on
that	row	from	left	to	right.
For	each	column	 	 (),	 Jinu	wrote	 the	 lengths	 of	 the	 runs	 of	 black
cells	on	that	column	from	top	to	bottom.

Write	a	program	that	recovers	the	chessboard	from	Jinu's	puzzle.

Implementation	details

You	should	 implement	the	 following	function.	 It	will	be	called	by	the	grader	once	 for
each	test	case.

​int[][]	SolveNonogram	(int	N,	int	M,	int[][]	Rclue,	int[][]	Cclue) ​

:	number	of	rows	of	the	chessboard.
:	number	of	columns	of	the	chessboard.

:	 an	 array	 of	 integer	 arrays.	 For	 each	 	 ()	 and	 	 (
),	 	is	the	length	of	the	 -th	run	of	black	cells

from	the	left	in	row	 .	Note	that	the	size	of	 	can	be	different	for	each	 .
:	 an	 array	 of	 integer	 arrays.	 For	 each	 	 ()	 and	 	 (

),	 	is	the	length	of	the	 -th	run	of	black	cells

Nonogram (1 of 3)

from	the	top	in	column	 .	Note	that	the	size	of	 	can	be	different	for	each	 .
This	 function	should	return	a	 two-dimensional	 	by	 	array	of	 integers	 .	For
each	cell	 ,	 	should	be	1	if	 	is	colored	black,	and	0	if	 	is	colored
white.
If	there	are	multiple	valid	answers,	this	function	should	return	any	one	of	them.

Constraints

There	exists	at	least	one	answer	to	the	given	puzzle.

Subtasks

1.	 (25	points)	
2.	 (75	points)	No	additional	constraints.

Example

Consider	the	following	call:

​SolveNonogram(5,	5,	
														[[3,	1],	[4],	[1,	3],	[2,	2],	[1,	1,	1]],	
														[[5],	[2,	1],	[3,	1],	[3],	[1,	3]]) ​

One	possible	answer	is:

​[[1,	1,	1,	0,	1],
	[1,	1,	1,	1,	0],
	[1,	0,	1,	1,	1],
	[1,	1,	0,	1,	1],
	[1,	0,	1,	0,	1]] ​

Sample	grader

You	can	download	the	sample	grader	package	on	the	same	page	you	downloaded	the
problem	statement.	(scroll	down	if	you	don't	see	the	attachment)

If	you	use	IDEs	like	Visual	Studio,	Eclipse	or	Code::Blocks,	then	import	 ​nonogram.cpp ​,
nonogram.h ​	and	 ​grader.cpp ​	into	one	project	and	you	will	be	able	to	compile	all	these
files	at	once.

If	you	want	to	compile	by	yourself,	refer	to	the	compilation	commands	in	the	statement

Nonogram (2 of 3)

page.

You	should	submit	only	 ​nonogram.cpp ​.

Input	format

line	1:	 	
line	 	 ():	 	 	 	 	

line	 	 ():	 	 	 	 	

Output	format

line	 	():	 	 	 	

Nonogram (3 of 3)

