

tri

100 points

Source code:tri.c, tri.cpp, tri.pasInput files:tri.inOutput files:tri.outTime limit:2 sMemory limit:64 MB

Task

You are given \mathbf{K} points with positive integer coordinates. You are also given \mathbf{M} triangles, each of them having one vertex in the origin and the other **2** vertices with non-negative integer coordinates.

You are asked to determine for each triangle whether it has at least one of the κ given points inside. (None of the κ points are on any edge of any triangle.)

Input

standard input

The first line of the input file tri.in will contain K and M. The following K lines will contain 2 positive integers \mathbf{x} \mathbf{y} separated by one space that represent the coordinates of each point. The next M lines have 4 non-negative integers separated by one space, $(\mathbf{x1}, \mathbf{y1})$ and $(\mathbf{x2}, \mathbf{y2})$, that represent the other 2 vertices of each triangle, except the origin.

Output

standard output

The output file tricout should contain exactly \mathbf{M} lines. The *k*-th line should contain the character \mathbf{Y} if the *k*-th triangle (in the order of the input file) contains at least one point inside it, or \mathbf{N} otherwise.

Constraints

- $1 \le K, M \le 100 000$
- 1 \leq each coordinate of the K points \leq 10⁹
- 0 \leq each coordinate of the triangle vertices \leq 10⁹
- Triangles are not degenerate (they all have nonzero area).
- In 50% of the test cases, all triangles have vertices with coordinates x1=0 and y2=0. That is, one edge of the triangle is on the *x*-axis, and another is on the *y*-axis.

Central European Olympiad in Informatics Tîrgu Mureş, România July 8 – 14, 2009 Contest Day 2

Example

tri.in	tri.out	Explanation
4 3	Y	▲
1 2	N	
1 3	Y	
5 1		$4+$ \sim \sim
5 3		
1 4 3 3		
2 2 4 1		2+/•
4 4 6 3		
		0 1 2 3 4 5 6
		0 1 2 3 4 5 6

tri.in	tri.out	Explanation
4 2	N	▲ · · · · · · · · · · · · · · · · · · ·
1 2	Y	
1 3		
5 1		4+
4 3		3- ▼ ●
0 2 1 0		
0 3 5 0		2+ •
		0 1 2 3 4 5 6
		0 1 2 3 4 5 0