
onward

2.	Play	Onwards
Two	years	have	passed	since	Seohun	became	tired	of	listening	to	Yonghun's	annoying
jokes.	Today	Yonghun	devised	a	new	type	of	joke	using	antonyms.	For	example:

"What	is	the	antonym	of	'program'?	Beginner-ton!	lololololol"

Being	 shocked	 by	 Yonghun's	 antonym	 joke,	 Seohun	 wrote	 all	 antonym	 jokes	 from
Yonghun	and	analyzed	them	to	spot	these	patterns:

1.	 Each	word	consists	of	lowercase	Latin	alphabet	' ​a ​'-' ​z ​'.
2.	 When	Seohun	says	an	 -letter	word,	Yonghun	responds	with	an	 -letter	word.
3.	 When	 responding,	 Yonghun	picks	 a	word	 from	a	dictionary	 that	 contains	 	 -

letter	words.
4.	 Among	all	words	in	the	dictionary,	Yonghun	picks	the	most	different	one	from	the

word	Seohun	said.	The	difference	between	word	 	and	word	 	 is	measured	by
the	number	of	indices	 	( )	where	 .

5.	 If	there	are	several	such	words,	Yonghun	picks	any	one	of	them	and	responds	with
that	word.

Now	Seohun	is	such	an	expert	on	antonym	jokes	that	he	can	correctly	figure	out	what
he	said	to	Yonghun	by	just	listening	to	the	response	of	Seohun.	You	can	do	it	too!	Write
a	 program	 that	 says	 something	 to	 Yonghun	 and	 another	 program	 that	 guesses	what
you	said,	given	only	the	response	of	Yonghun.

Implementation	details

You	have	to	submit	two	files.

The	 name	 of	 the	 first	 file	 is	 ​make.cpp ​.	 It	 represents	 your	 behavior	 and	 should
implement	the	following	function.	The	file	should	include	 ​make.h ​.

​string	MakeWord	(int	N,	int	M,	string[]	Dict) ​

:	the	number	of	words	in	the	dictionary.
:	length	of	each	word.
:	an	array	of	length	 .	For	each	 	( ),	 	is	an	 -letter	word

contained	in	the	dictionary.	All	words	in	the	dictionary	are	distinct.
This	function	is	called	exactly	once	per	test	case.
This	function	should	return	a	string	of	length	 ,	which	is	the	word	you	will	say	to

Onward (1 of 4)   



Yonghun.	This	string	should	only	contain	lowercase	Latin	alphabet	' ​a ​'-' ​z ​'.

The	name	of	the	second	file	is	 ​guess.cpp ​.	It	also	represents	your	behavior	and	should
implement	the	following	function.	The	file	should	include	 ​guess.h ​.

​string	GuessWord	(int	M,	string	YH) ​

:	the	length	of	the	word.
:	an	array	of	 length	 .	 It	 is	 the	response	of	Yonghun	after	 listening	to	your

word.
The	function	is	called	exactly	once	per	test	case.
This	function	should	return	a	string	of	length	 .	It	should	be	equal	to	the	word
you	said.	i.e.,	the	return	value	of	 ​MakeWord ​.

If	 some	 of	 the	 above	 conditions	 are	 not	 satisfied,	 your	 program	 is	 judged	 as	 ​Wrong
Answer ​.	Otherwise,	your	program	is	judged	as	 ​Accepted ​.

Important	Notice

During	the	actual	grading,	these	two	programs	are	compiled	independently.

Both	time	and	memory	usage	are	measured	by	the	sum	of	two	processes.

Your	program	should	not	use	standard	input	and	standard	output.	Your	program
should	 not	 communicate	 with	 other	 files	 by	 any	 methods.	 If	 you	 use	 standard
input	or	standard	output,	your	program	may	be	judged	as	 ​Wrong	Answer ​,	but	we
cannot	guarantee	what	would	happen.

Example

Consider	the	following	call.

​MakeWord(4,	7,	["weekend",	"evening",	"chicken",	"alcohol"]) ​

Suppose	the	return	value	of	 ​MakeWord ​	is	 ​"cafeine" ​.

Then,	the	following	call	is	made:

​GuessWord(7,	"alcohol") ​

For	your	program	to	be	judged	as	 ​Accepted ​,	the	return	value	of	 ​GuessWord ​	should	be
"cafeine" ​,	which	equals	to	the	return	value	of	 ​MakeWord ​.

Onward (2 of 4)   



Constraints

	(for	each	 )
	only	consists	of	lowercase	Latin	alphabet	 ​a ​- ​z ​.	(for	each	 )

	(for	each	 )

Subtasks

1.	 (100	points)	No	additional	constraints.

The	grading	criterion	for	this	task	is	quite	different.	Let	 	be	the	total	number	of	test
cases,	and	 	be	the	number	of	test	cases	where	your	program	is	judged	as	 ​Accepted ​.
Then,	you	get	 	points,	where	 	is	defined	as:

Sample	grader

You	can	download	the	sample	grader	package	on	the	same	page	you	downloaded	the
problem	statement.	(scroll	down	if	you	don't	see	the	attachment)

If	 you	 use	 IDEs	 like	 Visual	 Studio,	 Eclipse	 or	 Code::Blocks,	 then	 import	 ​make.cpp ​,
make.h ​,	 ​guess.cpp ​,	 ​guess.h ​	and	 ​grader.cpp ​	 into	one	project	and	you	will	be	able	to
compile	all	these	files	at	once.

If	you	want	to	compile	by	yourself,	refer	to	the	following	compilation	command:

​g++-7	-Wall	-lm	-static	-DEVAL	-o	onwards	-O2	grader.cpp	make.cpp	gue
ss.cpp	-std=c++17 ​

Note	that	the	actual	grader	is	different	from	the	sample	grader.	The	sample	grader	will
be	executed	as	a	 single	process,	which	will	 read	 input	data	 from	 the	 standard	 input
and	write	the	results	to	the	standard	output.

You	should	submit	only	 ​make.cpp ​	and	 ​guess.cpp ​.

Input	format

line	1:	 	
line	 	(for	each	 ):	

Onward (3 of 4)   



Output	format

If	your	program	is	 judged	as	 ​Accepted ​,	 the	sample	grader	prints	 ​Correct ​	 in	the	first
line.

If	 your	 program	 is	 judged	 as	 ​Wrong	 Answer ​,	 the	 sample	 grader	 prints	 the	 error
message	in	the	first	line.

Onward (4 of 4)   


